Synthesis and Biological Evaluation of Heteroanalogues of Kotalanol and De-*O***-Sulfonated Kotalanol**

Sankar Mohan,† Kumarasamy Jayakanthan,† Ravindranath Nasi,† Douglas A. Kuntz,‡ David R. Rose,‡,§ and B. Mario Pinto*,†

*Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6, Department of Medical Biophysics, University of Toronto and Di*V*ision of Molecular and Structural Biology, Ontario Cancer Institute, Toronto, ON, Canada M5G 2M9, and Department of Biology, Uni*V*ersity of Waterloo, Waterloo, Ontario, Canada N2L 3G1*

bpinto@sfu.ca

Received January 13, 2010

ORGANIC LETTERS **2010 Vol. 12, No. 5 ¹⁰⁸⁸**-**¹⁰⁹¹**

ABSTRACT

The synthesis of nitrogen and selenium analogues of kotalanol and de-*O***-sulfonated kotalanol, naturally occurring sulfonium-ion glucosidase inhibitors isolated from** *Salacia reticulata***, and their evaluation as glucosidase inhibitors against the** *N***-terminal catalytic domain of human maltase glucoamylase (ntMGAM) are described.**

The aqueous extracts of *Salacia reticulata*, a climbing shrub native to Sri Lanka and Southern India, used in Indian Ayurvedic medicine, have been consumed by patients as a remedy for the treatment of type-2 diabetes.¹ The safety and efficacy of *Salacia* extracts have been studied in both rats² and human patients with type-2 diabetes and a placebocontrol group.³ These studies showed that the extract is an effective treatment for type-2 diabetes, with no serious acute toxicity and side effects comparable to the placebo control

(3) Jayawardena, M. H. S.; de Alwis, N. M. W.; Hettigoda, V.; Fernando, D. J. S. *J. Ethnopharmacol.* **2005**, *97*, 215–218.

group. In recent years, we have focused our synthetic efforts on a novel class of sulfonium-ion glucosidase inhibitors, namely salacinol **1**, ⁴ kotalanol **2**⁵ and de-*O*-sulfonated kotalanol **3**, ⁶ isolated from the aqueous extracts of *Salacia reticulata* (Figure 1). Along with salacinol **1** and kotalanol **2**, two other members of this class of compounds, namely salaprinol **4** and ponkoranol **5**, have also been isolated from *Salacia prinoides*, another medicinally useful plant that belongs to the *Salacia* genus (Figure 1).⁷ The observed antidiabetic property of these herbal extracts is attributed, at least in part, to inhibition of the action of intestinal α -glucosidases by these sulfonium-ion active components.⁴⁻⁶

Simon Fraser University.

[‡] University of Toronto and Ontario Cancer Institute.

[§] University of Waterloo.

^{(1) (}a) Chandrasena, J. P. C. *The Chemistry and Pharmacology of Ceylon and Indian Medicinal Plants*; H&C press: Colombo, Sri Lanka, 1935. (b) Jayaweera, D. M. A. *Medicinal Plants Used in Ceylon-Part 1*; National Science Council of Sri Lanka: Colombo, 1981; p 77. (c) Vaidyartanam, P. S. In *Indian Medicinal Plants: a compendium of 500 species*, Warrier P. K., Nambiar V. P. K., Ramankutty, C., Eds.; Orient Longman: Madras, India, 1993, pp. 47-48. (2) Shimoda, H.; Fujimura, T.; Makino, K.; Yoshijima, K.; Naitoh, K.;

Ihota, H.; Miwa, Y. *J. Food Hygienic Soc. Japan* **1999**, *40*, 198–205.

⁽⁴⁾ Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.; Yamahara, J.; Tanabe, G.; Muraoka, O. *Tetrahedron Lett.* **1997**, *38*, 8367–8370.

⁽⁵⁾ Yoshikawa, M.; Murakami, T.; Yashiro, K.; Matsuda, H. *Chem. Pharm. Bull.* **1998**, *46*, 1339–1340.

^{(6) (}a) Ozaki, S.; Oe, H.; Kitamura, S. *J. Nat. Prod.* **2008**, *71*, 981– 984. (b) Muraoka, O.; Xie, W.; Tanabe, G.; Amer, M. F. A.; Minematsu, T.; Yoshikawa, M. *Tetrahedron Lett.* **2008**, *49*, 7315–7317.

⁽⁷⁾ Yoshikawa, M.; Xu, F.; Nakamura, S.; Wang, T.; Matsuda, H.; Tanabe, G.; Muraoka, O. *Heterocycles* **2008**, *75*, 1397–1405.

Figure 1. Sulfonium-ion glucosidase inhibitors isolated from *Salacia* species and related analogues.

We have synthesized several analogues of salacinol and studied their structure activity relationship (SAR) with human intestinal maltase glucoamylase (MGA).⁸ Some of the modifications included: replacement of the ring-sulfur heteroatom by the cognate atoms nitrogen^{9,10} and selenium;¹¹ change of the configurations of the stereogenic centers; and extension of the acyclic side chain.¹² Some of these compounds have shown higher or comparable inhibitory activities against MGA *in vitro* compared to acarbose and miglitol, two antidiabetic drugs that are currently in use for the treatment of type-2 diabetes.^{13,14}

The acyclic side chain-extension studies of salacinol led us to predict the possible stereochemical pattern of the acyclic side chain in kotalanol **2**, for which the absolute stereostructure was not determined at the time of its isolation. Recently, we have proved the absolute stereostructure of kotalanol **2** and de-*O*-sulfonated kotalanol **3** by total syntheses.15 In the case of salacinol, the substitution of the ring sulfur atom by nitrogen (ghavamiol, 6^9 IC₅₀ = high mM range,¹⁶ Figure 1) resulted in a dramatic decrease in inhibitory activity 1) resulted in a dramatic decrease in inhibitory activity against MGA (compare the K_i value of salacinol, 0.19 μ M¹³), whereas substitution by selenium (blintol, **7**, $K_i = 0.49 \,\mu\text{M}$,¹³ Figure 1) did not affect its inhibitory activity appreciably.

It is of interest, therefore, to study the effect of heteroatom substitution on the inhibitory activities of kotalanol **2** and de-*O*-sulfonated kotalanol **3**, both having a 3-carbon-

(16) Pinto, B. M.; Johnston, B. D.; Ghavami, A.; Szczepina, M. G.; Liu, H.; Sadalapure, K., US Patent, filed June 25, 2004.

extended acyclic side chain compared to salacinol **1**. We report here the syntheses of the nitrogen **8** and **9** and selenium **10** and **11** congeners of kotalanol and de-*O*-sulfonated kotalanol (Figure 2) and their evaluation as glucosidase

Figure 2. Heteroanalogues and stereoisomers of kotalanol and de-*O*-sulfonated kotalanol.

inhibitors against the amino terminal catalytic domain of human MGA (ntMGAM).¹³ Since de-*O*-sulfonated kotalanol **3** was found to be more active than kotalanol 2 itself,⁶ we have also converted two biologically active diastereomers 12 and 13 of kotalanol¹⁷ into their corresponding de- O sulfonated analogues **14** and **15**, respectively (Figure 2), and studied their inhibitory properties against ntMGAM.

The required *para*-methoxybenzyl (PMB)-protected Diminoarabinitol **16**¹⁸ and D-selenoarabinitol **17**¹⁹ were prepared by methods described in our earlier work. The required cyclic sulfate **18** was obtained from D-perseitol, as reported earlier.¹⁵ The synthesis of the nitrogen analogue **8** of kotalanol was examined first. The coupling reaction of the iminoarabinitol **16** with the cyclic sulfate **18** proceeded smoothly under our optimized reaction conditions (sealed tube, acetone, K_2CO_3 , 60 °C) as shown in Scheme 1.¹⁸ The coupled product **19** was purified by short column chromatography but was deemed to be unstable, probably due to the partial removal of PMB protecting groups, as confirmed by the formation of a more polar spot on TLC. Hence, without any further characterization, the coupled product **19** was taken on to the next step, namely removal of the PMB and benzylidene protecting groups using TFA/CH_2Cl_2 , as shown in Scheme 1.

Similarly, the selenium analogue **10** of kotalanol was obtained from selenoarabinitol **17** and the cyclic sulfate **18** using our optimized reaction conditions (sealed tube, HFIP, K_2CO_3 , 70° °C).¹⁸ As observed in previous work from our laboratory, 11 during the coupling reaction of D-selenoarabinitol **17** with the cyclic sulfate **18**, along with the desired coupled product **20** (40% yield), a considerable amount of the undesired diastereomer **21** (26% yield), with respect to the selenium center, was also formed (Scheme 1). The

⁽⁸⁾ For recent reviews, see: (a) Mohan, S.; Pinto, B. M. *Carbohydr. Res.* **2007**, *342*, 1551–1580. (b) Mohan, S.; Pinto, B. M. *Collect. Czech. Chem. Commun.* **2009**, *74*, 1117–1136. (c) Mohan, S.; Pinto, B. M. *Nat. Prod. Rep.* **2010**, in press.

⁽⁹⁾ Ghavami, A.; Johnston, B. D.; Jensen, M. T.; Svensson, B.; Pinto, B. M. *J. Am. Chem. Soc.* **2001**, *123*, 6268–6271.

⁽¹⁰⁾ Muraoka, O.; Ying, S.; Yoshikai, K.; Matsuura, Y.; Yamada, E.; Minematsu, T.; Tanabe, G.; Matsuda, H.; Yoshikawa, M. *Chem. Pharm. Bull.* **2001**, *49*, 1503–1505.

⁽¹¹⁾ Johnston, B. D.; Ghavami, A.; Jensen, M. T.; Svensson, B.; Pinto, B. M. *J. Am. Chem. Soc.* **2002**, *124*, 8245–8250.

^{(12) (}a) Johnston, B. D.; Jensen, H. H.; Pinto, B. M. *J. Org. Chem.* **2006**, *71*, 1111–1118. (b) Nasi, R.; Sim, L.; Rose, D. R.; Pinto, B. M. *J. Org. Chem.* **2007**, *72*, 180–186.

⁽¹³⁾ Rossi, E. J.; Sim, L.; Kuntz, D. A.; Hahn, D.; Johnston, B. D.; Ghavami, A.; Szczepina, M. G.; Kumar, N. S.; Sterchi, E. E.; Nichols, B. L.; Pinto, B. M.; Rose, D. R. *FEBS J.* **2006**, *273*, 2673–2683.

⁽¹⁴⁾ Sim, L.; Jayakanthan, K.; Mohan, S.; Nasi, R.; Johnston, B. D.;

Pinto, B. M.; Rose, D. R. *Biochemistry* **2010**, *49*, 443–451.

⁽¹⁵⁾ Jayakanthan, K.; Mohan, S.; Pinto, B. M. *J. Am. Chem. Soc.* **2009**, *131*, 5621–5626.

⁽¹⁷⁾ Nasi, R.; Patrick, B. O.; Sim, L.; Rose, D. R.; Pinto, B. M. *J. Org. Chem.* **2008**, *73*, 6172–6181.

⁽¹⁸⁾ Liu, H.; Sim, L.; Rose, D. R.; Pinto, B. M. *J. Org. Chem.* **2006**, *71*, 3007–3013.

⁽¹⁹⁾ Liu, H.; Pinto, B. M. *J. Org. Chem.* **2005**, *70*, 753–755.

undesired diastereomer **21** was conveniently separated from the desired coupled product **20** by column chromatography. Once again, the removal of the PMB and benzylidene protecting groups was achieved in one pot using TFA/ CH2Cl2. Thus, compounds **20** and **21** upon deprotection gave **10** and **22**, respectively, as final products.

The absolute configuration at the stereogenic selenium center in compound **10** was established by means of a 1D-NOESY experiment. A correlation between H-4 and H-1′a confirmed that they are syn-facial. In the case of compound **22**, correlation of H-1b with H-3 and also with H-1′a confirmed that they all are syn facial, thus establishing the absolute configuration at the selenium center as *S* (Scheme 1). Compound **22** differs from **10** only with respect to the configuration at the stereogenic selenium center. Hence, this compound **22** served as a probe of the importance of the *R* configuration at the positively charged ring heteroatom for inhibitory activity; all of the naturally occurring compounds **¹**-**⁵** have the *^R* configuration at the stereogenic sulfur center. In the case of the nitrogen analogue **8**, the absolute configuration at the ammonium center was assigned as *R* by analogy with our previous work,^{9,18} since a NOESY experiment was not possible owing to the broad, overlapping signals at neutral pH.

With the sulfated compounds in hand, we turned next to the synthesis of the corresponding de-*O*-sulfonated analogues. Compounds **8**, **10**, **12**, ¹⁷ and **13**¹⁷ were converted into their corresponding de-*O*-sulfonated compounds **9**, **11**, **14**, and **15** respectively, in a two step process, first treatment with 5% methanolic $HCl₁⁷$ followed by treatment with Amberlyst-A26 (chloride resin) in MeOH, as shown in Scheme 2. Similarly, compound **22** was also converted into the corresponding de-*O*-sulfonated compound **23** (Table 1).

^a Analysis of ntMGAM inhibition was performed using maltose as the substrate.

The inhibitory activities of the synthesized compounds (**8**-**11**, **¹⁴**, **¹⁵**, **²²**, and **²³**) against the maltase activity of recombinant ntMGAM¹³ are summarized in Table 1. In addition, we also report here the enzyme inhibitory activity of compound **24**¹⁵ (Table 1), a diastereomer of de-*O*sulfonated kotalanol, that was previously synthesized in our group. Except for the nitrogen analogue of kotalanol (**8**), all of the compounds synthesized in this study show greater inhibitory activities than acarbose, an antidiabetic agent that is currently approved for the treatment of type-2 diabetes (Table 1).13 In general, de-*O*-sulfonation leads to an increase in inhibitory activity compared to the parent sulfated compounds. Interestingly, in the case of the nitrogen analogue of kotalanol **8**, de-*O*-sulfonation resulted in a very large increase in inhibitory activity (compare K_i values of compounds **8** and **9**, Table 1). Our results also indicate that the substitution of the ring sulfur atom by the cognate atom selenium does not confer any significant advantage (kotalanol, $X =$ Se: $K_i = 80$ nM. $X =$ S: $K_i = 190$ nM) and de-*O*-sulfonated kotalanol ($X = Se: K_i = 20$ nM. $X = S: K_i =$

30 nM)). Interestingly, substitution of the ring sulfur atom by nitrogen **8** is detrimental to inhibitory activity ($K_i = 90$) μ M), whereas it does not have any significant change on the inhibitory activity of the nitrogen analogue of de-*O*sulfonated kotalanol **9** ($K_i = 61$ nM).

The significant decrease in the inhibitory activity of the nitrogen analogue of kotalanol **8** relative to kotalanol **2** deserves comment. Interestingly, this trend was also observed with ghavamiol (the nitrogen analogue of salacinol) **6**⁹ relative to salacinol **1**. We speculate, based on our recent crystallographic work with salacinol and kotalanol derivatives, 14 that the positioning of the sulfate anion of 8 in a hydrophobic pocket in the active site is more sterically compromised than in the sulfur congener **2**. Relief of this steric interaction by de-*O*-sulfonation to give **9** apparently relieves this interaction, and gives a compound that is just as active as its sulfur congener **3**. We note also that the *R* configuration at the stereogenic heteroatom center, as exhibited by all of the natural compounds $1-5$ isolated so far, is essential for inhibitory activity; thus, the inhibitory activities of compounds **22** and **23**, bearing the *S* configuration at the stereogenic selenium center, are considerably less than those of their corresponding diastereomers with the *R* configuration, **10** and **11**, respectively. As predicted, the de-*O*-sulfonated compounds, **14** and **15** are found to be more active compared to the parent compounds, **12** and **13**, respectively. We note also that the compound **24**¹⁵ is the most potent inhibitor of ntMGAM *in vitro* known to date.

Acknowledgment. We are grateful to the Canadian Institutes for Health Research (FRN79400) and the Heart and Stroke Foundation of Ontario (NA-6305) for financial support. This article is dedicated, with respect and gratitude, to Professor S. Wolfe for his mentorship.

Supporting Information Available: Experimental procedures, characterization data, and ${}^{1}H$, ${}^{13}C$ NMR spectra of compounds **⁸**-**11**, **¹⁴**, **¹⁵**, **²²**, and **²³**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100080M